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Abstract 

Binary codes are useful representations of images used in image retrieval and classification.  

Similarly to other techniques that compress large matrices into smaller representations, there is a fine 

balance between discarding as much information as possible whilst retaining the predictability of the 

data. 

This project focuses on extending an existing method of generating binary codes by adding an 

orthogonality constraint between each of the binary codes. The idea behind this approach is to create 

features that have a visual meaning to humans and that encompass different aspect of an image.  

This report covers the theory behind the orthogonality constraint and how it was added to the original 

method. As well as covering the theory, the practical details of the implementation are covered 

explaining how the optimization problem was solved and implemented. 

An extensive comparison between the original method and the modified algorithm is covered in this 

report, comparing and contrast discriminative results as well as displaying the results in some 

visualization. 
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1. Introduction 

Thanks to more powerful mobile cameras and the ever growing number of social media websites, in 

recent years the amount of pictures taken everyday has increased exponentially. 

On Instagram alone, 70 millions pictures are shared every day averagely. (Instagram - Press, 2015) 

Thanks to this ever growing number of visual sources of information both the research community and 

corporations have taken great interest in extracting information from images and finding better ways of 

indexing, searching and classifying images. 

One specific area of research is binary representations of images. Binary representations are interesting 

because they can be used for many machine learning tasks such as classification and retrieval with great 

performance over other representations.  

The aim of this project was initially to build a machine learning application using an established method 

of extracting binary codes from images. However after finding some shortcomings of the original 

method, the project steered towards trying to overcome those shortcomings and therefore trying to 

improve the original method. 

 The work conducted during this project is summarized in this report, highlighting what the main issue 

was with the original method and creating a new problem formulation to try and overcome the issue. 

Additionally the details of the implementation of the revised method are highlighted, explaining which 

parts of the original code were modified. 

After describing the changes to the problem formulation and its implementation, the report describes 

the evaluation method that was put in place in order to compare the performance of the original 

method and the revised method. 

Lastly the results of the experiments are reported, compared and discussed. 

2. Background 

“There has been increasing interest in building search/index structures for performing similarity search 

over high-dimensional data, e.g., image databases, document collections, time-series databases, and 

genome databases” (Gionis, Indyk, & Motwani, 1999) and those searches often suffer from the “curse of 

dimensionality”. For this reason various techniques have been explored to try to reduce large 

dimensional spaces in binary codes.  
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“Binary codes are attractive image representations for image search and retrieval, because they are easy 

to match, and the capacity of the space of very short binary codes is so large that all of the digital images 

in the world can be indexed with relatively short binary codes.” (Rastegari, Farhadi, & Forsyth, 2012) 

However, generating binary codes is no easy task. 

Initially the problem was seen simply as a dimensionality reduction problem, hence techniques like PCA 

where firstly explored to reduce the dimensionality of the data. However when reducing dimensionality 

using PCA, we are essentially creating a mapping between the initial dimensions and the reduced 

dimensions. This means that although we get smaller dimensions, the resulting features are not really 

“simple” and not binary. 

So in 2001 a new idea was explored which to create very simple features representation, which the 

authors described as “machine learning approach for visual object detection which is capable of 

processing images extremely rapidly and achieving high detection rates” (Viola & Jones, 2001) In their 

method they used Haar-like box functions to classify images of faces, and their method of simplifying 

the features used, gave some very good results in that context. 

Since then binary representations have really taken off, and in 2011 Gong & Lazebnik summarized how 

an effective method of producing binary codes should be built: 

 “An effective scheme for learning binary codes should have several properties. First, the codes should 

be short so that we could store large amount of images in memory. [..] Second, the codes should map 

images that are similar (either perceptually or semantically) to binary strings with a low Hamming 

distance. Finally, the algorithms for learning the parameters of the binary code and for encoding a new 

test image should be very efficient. The need to simultaneously satisfy all three constraints makes the 

binary code learning problem quite challenging.” (Gong & Lazebnik, 2011) 

Gong & Lazebnik describe a method called Iterative Quantization (also known as ITQ).  

A number of methods have been explored over the years, with some of the most notable ones using 
hashing functions. With the main variants being locality sensitive hashing (Gionis, Indyk, & Motwani, 
1999), parameter sensitive hashing (Shakhnarovich, Viola, & Darrell, 2003), kernelized locality sensitive 
hashing (Kulis & Grauman, Kernelized locality-sensitive hashing for scalable image search., 2009), binary 
reconstructive embedding (Kulis & Darrell, Learning to hash with binary reconstructive embeddings., 
2009) and semantic hashing (Salakhutdinov & Hinton, 2009) 
  
In the paper “Attribute Discovery via Predictable Discriminative Binary codes” by Rastegari et al (2012), 

the authors claim to “differ from these constructions, because our method is explicitly discriminative. 

Furthermore, instead of learning bits independently, we learn bit vectors as a whole.” (Rastegari, 

Farhadi, & Forsyth, 2012). As it will be described later in this report, in the method described by 



Michele Ricciardi 

 

 

8   

 
 

Rastegari et al the learning problem is explicitly focusing on making each of the binary codes 

discriminative. They do this by minimizing the distance of similar images and maximizing the distance 

between dissimilar images (more details will be covered in later sections of this report).  

In this paper the authors make an in depth comparison between state of the art methods and their 

solution and they demonstrate that their method performs better than state of the art methods.  

As this method outperforms other state of the art methods, it was decided to proceed with this method 

to build the 20 questions game. 

3. Application 

In the first part of this project the option of creating an application which utilized the binary codes was 

explored. The idea was to build a “20 questions game” using the binary codes generated using the 

method described in Rastegari et al (2012). 

The concept of the 20 question game is that the application asks the user to think of an object or person 

and after asking 20 questions the application guesses what the user was thinking of. 

Binary codes would be the perfect image representation for this type of application. 

The main idea is that the user would have to reply Yes or No to each question and by doing so the 

application can start forming the binary code based on each response (Yes=1, No=0). So At the end of 

the 20 questions the application will have a 20-bit long code which can then be used to search through 

the dataset and understand which object/person the user was thinking of. 

The initial thought was that once the binary code was formed (i.e. when the user answered all of the 

questions), the application would do a kNN classification using the Hamming distance as a metric. 

The initial thought was that this could be achieved using the binary features extracted using the method 

described in Rastegari et al (2012). This is because each of the binary code created is an “unnamed” 

visual characteristic of a given image and whilst an application cannot name the feature itself, a human 

should be able to easily recognize such visual characteristic. 

Before pursuing the idea of building an application using the binary codes few considerations were 

made. 

Firstly it was necessary to find an appropriate dataset for the task. As animals are quite easily 

recognizable by humans and some of them can be recognized by unique features such as stripes, spots, 

fur etc. a dataset of animals would be an idea for such game. A great animals’ images dataset was found 

called Animals with Attributes (Lampert, Nickisch, Harmeling, & Weidmann, 2008-2015). This dataset 
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contains 30475 images of 50 animals and it comes with different extracted features.  

The dataset chosen for this potential application was the DECAF features dataset. 

Secondly once the dataset was chosen it was necessary to generate binary codes for the dataset. 

To achieve this, the original code of the “Attribute Discovery via Predictable Discriminative Binary 

Codes” paper was used.  Given that the numbers of images per animal were very imbalanced in the 

original dataset, a decision was taken to only use 500 images per animal and to discard any animal that 

did not have at least 500 images. 

Because of this the number of observations reduced from 30475 to 17500. 

Thirdly once the dataset was processed and the binary codes were created for each of the observations, 

it was crucial to understand whether those “unnamed” features could be named easily and could be 

used to build such application. 

In order to assess the suitability of those binary codes a small application was built. The application was 

built using the MEAN stack (MongoDB, Express, AngularJS and NodeJS). This application was simply used 

to get the binary codes generated and to display the images with a 1 and the images with a 0 for each of 

the bits. 

The result was the following: 

 

Figure 1: Binary features of AwA (bits 1-4) 
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Figure 2: Binary features of AwA (bits 5-8) 

 

Figure 3: Binary features of AwA (bits 9-12) 
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Figure 4: Binary features of AwA (bits 13-16) 

It soon became clear that although the binary codes were indeed very discriminative and for certain bits 

the “unnamed” feature could be named (for example: spots or stripes), some of the bits were redundant 

or very close to each other. 

This posed a problem given that if some of the bits were redundant or almost describing the same 

unnamed feature, it would be very difficult to build something that would make sense for users. 

Additionally the other issue is that some of the features were less easy to name than others. 

Once this realization was drawn the direction of the project steered slightly and focused specifically on 

the process of creating binary codes, trying to create binary codes that are not redundant but 

orthogonal to each other. 

4. Generating orthogonal binary codes 

In this section the method of generating binary features is briefly explained, identifying the reason some 

of the binary codes may be redundant and how to overcome the issue. This is followed by an 

explanation of the orthogonality constraint and how it was added to the initial formulation. 

A. Original method 

In the original method by Rastegari et al (2012) the original problem is formulated as follows: 
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“where   can be any distance in the hamming space,       
    

      
  ,    is the weight vector 

corresponding to the    split,   
  is the slack variable corresponding to the     split and     example,   is 

the total number of categories,   is the number of splits,   is the total number of examples in the train 

set,   
  the training label for the     example to train the     split, and   

  indicates the prediction results 

of     example using the split  .”(Rastegari et al, 2012) 

As it can be seen from this formulation the method tries to minimize the distance between binary codes 

of images which are similar to each other whilst maximizing the distance between binary codes of 

images which are dissimilar. 

Also we can see from the formulation that the only constraint on the weight vector   is the 

regularization parameter of the margin. Additionally this constraint is imposed only on each vector   for 

each of the   splits. This means that there are constraints between the   vectors of different splits. 

For all we know given the original formulation two or more   vectors may be representing the same 

visual characteristic of an image. 

For this reason the next logical step was to add a constraint which would enable an easy differentiation 

between each of the binary code. This was achieved by adding an orthogonality constraint. 

B. Orthogonality Constraint 

By definition orthogonality is a relation between two lines at right angles between each other. 

This concept can also be applied to vectors, given that vectors can be thought of in the geometric form 

as quantities with a magnitude and a direction. 
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For this reason, we can describe operations between vectors in both an algebraic sense and a geometric 

sense.  

Given this, we can express the dot product in the geometric interpretation as follows: 

                 

Where   is the angle between vector   and vector . 

 

Figure 5: Geometric interpretation of 2D vectors 

Looking back at the definition of orthogonality and at the definition of the dot product in the 

geometrical sense, we can quickly see that 2 vectors are orthogonal when their dot product is equal to 

0. 

This is true given that when                               

C. Revised approach 

Having looked at the definition of orthogonality the next step was to add an orthogonality constraint to 

the original formulation.  

Firstly it was crucial to understand which of the variables would be subject to the orthogonality 

constraint.  

As it can be seen from the original formulation: 

 

Meaning that each of the binary code is a direct manipulation of the dot product between a specific 

weight vector    and  . For this reason the orthogonality constraint should be put in place between the 

weight vectors  . 

Also from the original formulation we can understand that in order to create   binary codes we require 

  number of weight vectors  , given that         .  
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So given a matrix   being the matrix     where each of the columns is the    vector, we can 

describe the orthogonality constraint as follows: 

          
    

Where   is the identity matrix of the resulting   by   matrix from the     operation. 

The resulting matrix of the     operation is a matrix   by   where each of the cell     corresponds to 

the dot product between    and   . 

 
   

      
  

   

   
      

  

  

Essentially this operation enforces that: 

             

         

This means that by adding the additional term to the original formulation, we will be constraining the 

optimization to ensure orthogonality between each of the weight vectors. 

As such, we can define the new formulation as follows: 

   
       

 

 
                  

       

       
 

       

       
            

 
  

 
          

         

            

        
    

             
  

  Is an additional regularization parameter required for the various experiments to regularize the 

orthogonality constraint. 

5. Implementation  

Given that only one parameter added to the original formulation rather than implementing the entire 

solution from scratch the existing dbc code was modified. 

In this section the details of how the code was modified are highlighted and how the SVM was 

implemented with the additional constraint. 
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A. Original implementation 

The original implementation of the optimization problem is as follows: 

 

As it can be seen from step 6 the original implementation trains   linear-SVMs to perform the 

minimization on   once fixed   and  . Because the new formulation adds a constraint on  , modifying 

the code of the SVM itself was required. 

The original implementation uses an off the shelf implementation of SVM called liblinear (Fan, 2008) and 

as the library is very comprehensive at this stage it was decided to write a custom version of SVM. 

This choice was taken as it would be easier to implement the SVM algorithm specific to this optimization 

rather than a comprehensive library such as liblinear.  

B. SVM implementation 

To put it simply SVM is just another optimization problem. 

Rather than writing the optimization algorithm from scratch, a library called L-BFGS-B-C was used 

(Becker). The library implements a variation of the Limited-memory BFGS algorithm that uses an 

estimation of the inverse Hessian matrix to navigate through the search space of the optimization. 

Like every other optimization problem there are 2 main elements that are required: 

1. The value to optimize 

2. The gradient of the objective value  
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In this case the value to optimize is the loss function (hinge loss is used), which is as follows: 

                   
         

    

       

          

       

            
  

         

    
  

    
 

   
  

    
 
      

  
    

 

   
  
    

 
    

And where   consists of a 3 dimensional matrix given that there is a matrix  -by-  for each binary code 

to be learnt (  of them).  

As it can be seen, the loss function is simply the Hinge loss followed by a regularization parameter all 

summed up with the orthogonality constraint described in the previous chapter. 

The second element required for the optimization is the gradient of the loss function. This can be found 

below. 

     
            

         
           

     
  

       

       

       

              

Given that the objective function and its gradient were found, a wrapper function was written to plug 

those functions into the optimization algorithm, together with the input data. (customSVMTrain2) 

Lastly as the optimization algorithm can only work with a vector and not a matrix, the values of W were 

concatenated horizontally, similarly to the output of the gradient of the loss. 

In order to verify that the calculations of the gradient were in fact correct, the function checkgradient 

was used (Rennie, 2006).  

C. Changes to original code 

Once the custom SVM was implemented for this application, the original dbc code was modified. 

Firstly the part of the original code that used liblinear was modified to use the custom SVM. This 

included more than just swapping the 1 line of code given that the inputs provided to liblinear in the 

original code were different from what the custom SVM requires. 

To be specific, in the original code there are   linear-SVMs being trained and therefore there were   
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matrices   of dimensions  -by-  whilst the custom SVM requires the entirety of the training data, 

together with the associated label vectors. 

Secondly the original code was modified to pass the necessary parameters to the code and to get rid of 

any unused variables.  

6. Methods of evaluation 

In order to understand and quantify whether adding the orthogonality constraint does in fact result in 

better binary codes, an effective evaluation methods was needed. 

Given the nature of the problem it is difficult to estimate an accurate measure because we do not have 

the “correct” binary codes for each of the images. In fact, there is no “correct” binary code for each 

image. 

Even though we do not know what the “correct” binary codes may be for those images, we have an idea 

of how to compare binary codes and understand which one is “better”. 

In order to get the understanding of what a “good” and a “bad” set of binary codes may be, we can 

simply interpret the original problem formulation in section 4.A. 

As we can see from the original problem formulation, we are trying to minimize the distance of two 

binary codes when two images are similar, and to maximize the distance between two binary codes 

when two images are dissimilar. 

Given this definition we can assume that the closer 2 binary codes are the more similar 2 images are. 

Following this concept, we can also assume that by clustering on the binary codes of   images, given   

number of classes, 2 images of the same class will be assigned to the same cluster if their binary codes 

are similar. We could also assume that after the clustering 2 images that belong to different classes will 

be in different clusters. This is the concept that was used to create a measure of effectiveness. 

Essentially to get a measure of how binary codes compare the resulting binary codes are clustered. 

When clustering the binary codes the Hamming distance is used. This is due to the fact that we are 

dealing with binary data and therefore a difference of 1 bit in an 8-bit code is the same no matter the 

position of the bit that is different (i.e.                                              ) 

After clustering the results there are 3 main measures that are computed: 

1. Adjusted Random Index (Kaijun, 2007) 

2. Mutual Information (Chen, 2012) 

3. Normalized Mutual Information (Chen, 2012) 
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Those measures are obtained by comparing the computed clustering with the original tag for each of the 

animals. 

7. Experiments details 

Once the original code was modified and some measures were in place to assess the performance of the 

algorithm, an experiment was set up to try and understand how much impact the orthogonality 

constraint would have. 

A. Dataset 

Firstly given that the Animal with Attributes dataset was already obtained to explore the possible 

creation of the 20 questions game, it was decided to proceed with the same dataset. 

As mentioned earlier the original dataset consists of 30475 images of 50 animals, however the number 

of images per animal is not balanced. For this reason 35 animals were extracted from the dataset and 

500 observations per animals were picked. 

This resulted in the final dataset being 17500 observations. 

Secondly in the original dataset the features of each observation are in 4096 dimensions. Early on in the 

experiments it was clear that in order to be able to get the experiments to run in a reasonable amount 

of time, it was necessary to reduce the dimensionality of the data. 

Some considerations were made before doing this. Given that the final aim of this experiment was to 

compare the performance of the algorithm with the orthogonality constraint and the algorithm without 

the orthogonality constraint, it was not necessary to keep as much data as possible therefore it was 

acceptable to reduce the dimensionality of the data. 

The dimensionality of the data was reduced using PCA and it was reduced from 4096 dimensions to 100 

dimensions. This was done out of necessity given that the high dimensionality and high number of 

observations were causing the initial experiments to take 5+ days to run.  

As mentioned earlier this should not impact the results of the experiments given that the focus of this 

project has now become comparing the code with and without orthogonality constraint. 

B. Set of applications 

During this project 2 main applications were developed. 

The first application is the MATLAB application used to generate binary codes.  

Essentially the MATLAB application was the main application used to gather data. 
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The application retrieves the Animals with Features data from file system, creates the binary codes, 

evaluates the results and stores the obtained codes in a MongoDB database. 

The second application is simply a visualization of the binary codes itself. This application is built using 

NodeJS and AngularJS. The application simply serves to the client the data stored in the MongoDB 

database and the pictures themselves. An overview of the application architecture can be seen in the 

figure below. 

C. Experiments set-up 

In order to understand and quantify the difference between the algorithm with the orthogonality 

constraint and without the orthogonality constraint the experiment was set up as follows: 

1. Different sizes of binary codes were setup: 2, 4, 8, 16, 24, 32 

2. Various values for the regularization parameter   were assigned, from      to      (with steps 

of 1 for the exponent) 

3. Various values for the regularization parameter   were assigned (  being the regularization 

parameter for the orthogonality constraint): 0, 1, 10 

4. For each combination of the 3 parameters above,  -fold validation was carried out (with    ) 

With this setup there should be enough data to make the experiment relevant and to give a real 

indication of the concrete difference between the orthogonality constraint turned on or off. 

8. Results 

After the experiment was run the data was extracted into a spreadsheet (attached).  

A summary of all of the results is as follows:  
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Bits 2 
  G 0 1 10 

Avg ARI 0.0066 ± 0.0003 0.0066 ± 0.0002 0.0063 ± 0.0002 

Avg NMI 0.1773 ± 0.0029 0.1779 ± 0.0015 0.1746 ± 0.0028 

Avg MI 0.3087 ± 0.0069 0.3101 ± 0.0035 0.3020 ± 0.0069 

    

    

    Bits 4 
  G 0 1 10 

Avg ARI 0.0137 ± 0.0002 0.0127 ± 0.0014 0.0137 ± 0.0003 

Avg NMI 0.2325 ± 0.0018 0.2257 ± 0.0105 0.2326 ± 0.0020 

Avg MI 0.6107 ± 0.0064 0.5812 ± 0.0441 0.6104 ± 0.0072 

    

    

    Bits 8 
  G 0 1 10 

Avg ARI 0.0140 ± 0.0012 0.0138 ± 0.0006 0.0135 ± 0.0008 

Avg NMI 0.2264 ± 0.0076 0.2248 ± 0.0034 0.2226 ± 0.0046 

Avg MI 0.6464 ± 0.0419 0.6365 ± 0.0242 0.6291 ± 0.0296 

    

    

    Bits 16 
  G 0 1 10 

Avg ARI 0.0149 ± 0.0004 0.0149 ± 0.0003 0.0148 ± 0.0004 

Avg NMI 0.2278 ± 0.0032 0.2274 ± 0.0024 0.2268 ± 0.0025 

Avg MI 0.6970 ± 0.0128 0.6963 ± 0.0104 0.6935 ± 0.0110 

    

    

    Bits 24 
  G 0 1 10 

Avg ARI 0.0153 ± 0.0002 0.0151 ± 0.0006 0.0153 ± 0.0003 

Avg NMI 0.2295 ± 0.0018 0.2290 ± 0.0030 0.2297 ± 0.0028 

Avg MI 0.7099 ± 0.0071 0.7061 ± 0.0158 0.7100 ± 0.0113 
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    Bits 32 
  G 0 1 10 

Avg ARI 0.0156 ± 0.0002 0.0155 ± 0.0002 0.0156 ± 0.0002 

Avg NMI 0.2324 ± 0.0013 0.2315 ± 0.0011 0.2321 ± 0.0021 

Avg MI 0.7234 ± 0.0053 0.7204 ± 0.0047 0.7226 ± 0.0081 

 

The tables show the mean and standard deviation values of the ARI, NMI and MI for each of the G value 

(G being the regularization parameter of the orthogonality constraint) for each of the binary code length 

(2,4,8,16,24,32). 

Those averages are the averages for the experiments with fixes bit length and fixed G, but with values of 

C going from      to     . 

Those results can be summarized with the following charts: 

 

Figure 6: Results - ARI 
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Figure 7: Results - NMI 

 

Figure 8: Results: MI 

As it can quickly be gathered from the charts, adding the orthogonality constraint does not impact on 

the performance of the binary codes at all (according to the selected measures). This in itself is certainly 

an interesting result.  

From this we can gather that no matter whether the orthogonality constraint is included or not, we can 

gain binary codes which allow us to cluster effectively. 
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A trend that we can easily recognize is that the accuracy goes up as the length of the binary codes goes 

up. This can be easily explained given that as we have more and more bits, we can recognize more and 

more “labels”. For example if we only have a binary code of length 2, in the best case scenario we would 

be able to recognize 4 different labels (animals in this instance). Similarly as the number goes up, so 

does the number of possible animals that we can discriminate against given the binary codes. 

Once these results were gathered the next question to answer was whether the resulting binary codes 

are indeed more recognizable to humans and whether by adding the constraint we have in fact 

eliminated (or considerably reduced) the amount of redundant bits. 

In order to answer this questions the binary codes were produced for the best C value with G=0 and the 

best C value with G=10. 

Once the codes were produced on the entire dataset, the results were inserted in the database and 

visualized using the visualization application. 

The results will be illustrated below. Please note that the visualizations should be interpreted as follows: 

Each row describes a BIT, the left-hand column contains images that have the lowest values for that bit, 

conversely on the right-hand column contains images that have the highest values for that bit. 

With orthogonality OFF (first 10 out of 32 bits): 

 

Figure 9: Orthogonality off (bits 1-5) 
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Figure 10: Orthogonality off (bits 6-10) 

As we can see from these results, in certain occurrences we can see that multiple bits seem to 

encompass very similar feature about the image. In specific if we look at Bit number 6 and 7, we can see 

that their highest scoring images are very similar. This is exactly the type of problem that the revised 

formulation is trying to solve. 

The following visualization displays the results with the orthogonality ON (first 10 out of 32 bits): 

 

Figure 11: Orthogonality on (bits 1-5) 
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Figure 12: Orthogonality on (bits 6-10) 

Compared to the visualization of the data without the orthogonality constraint, we can see that (in most 

cases) for each bit we have a very different set of images. However we can also see that in some of the 

bits images are repeated, for example in bits 6 and 7. This can be explained by the fact that the 

orthogonality constraint was indeed regularized and in order to enforce a stricter rule, the G can be set 

to a higher value. 

The other interesting observation is that by comparing the visualizations side by side (window on the left 

is displaying the data obtained with orthogonality, on the right without orthogonality), we can see that 

some of the pictures for the low values of each bit are similar for both visualizations. 
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Figure 13: Results side-by-side (bits 1-2) 

 

Figure 14: Results side-by-side (bits 3-4) 
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9. Discussion  

Having worked on this project for a considerable amount of time, I had many chances to reflect on the 

main proposition of this method.  

Although this method improves specifically in getting bits that encompass different features, it may be 

more useful in certain scenario than others. In specific, this may be very useful in tasks such as image 

retrievals or in the context of building a game where each feature should be fairly “unique”, however it 

may decrement performance in other type of applications. 

One example in which this method may decrement performance is classification. The reason for this is 

that by forcing each of the bit to be orthogonal, we could potentially loose discriminative power for that 

specific bit, which may results in binary codes which are less discriminative.  

10. Further Work 

Although some experiments have been run to understand the impact of adding the orthogonality 

constraint, it would be interesting to carry out more experiments and possibly build an application with 

binary codes generated with and without the orthogonality constraint. 

Given that the initial aim was to create binary features that make sense for humans, it would also be 

interesting to conduct experiments with groups of people that can identify and name binary codes. 

Lastly there are some interesting techniques to evaluate binary codes, in this project I decided to build 

my own evaluation measures because of the nature of the evaluation. However it would be interesting 

to compare the results obtained with other evaluation methods and bigger datasets.  
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12. Appendices 

A. Matlab code 

I. Creating_label_tabel.m 

function 

label_tabel=creating_label_tabel(train_data,train_label,number_of_hypothesis) 

% Initialize by PCA 

 

[signals,PC,V] = pca2(train_data); 

label_tabel=(signals(1:number_of_hypothesis,:)>=0); 

 

II. Train_hypothesis.m 

function hypothesis = train_hypothesis(train_data,label_tabel,opt1, c, g) 

% 

    [m n]=size(label_tabel); 

    number_of_hypothesis=m; 

    low_dim=length(train_data(:,1)); 

    customSVM = true; 

    [M N] = size(train_data); 

    %custom SVM here 

    posneg_train_data = zeros(N, M, number_of_hypothesis); 

    posneg_train_label = zeros(N, number_of_hypothesis); 

    for i=1:number_of_hypothesis 

        train_label=label_tabel(i,:); 

        pos_train_idx=find(train_label==1); 

        neg_train_idx=find(train_label~=1); 

        posneg_train_data(:,:,i)=double([train_data(:,pos_train_idx) 

train_data(:,neg_train_idx)]'); % binarized verion of classemes 

        posneg_train_label(:,i)=[ones(length(pos_train_idx),1); -

ones(length(neg_train_idx),1)]; 

    end 

    hypothesis = customSVMtrain2(posneg_train_data, posneg_train_label, c, 

g); 

end 

 

III. Update_hypothesis.m 

function new_hypothesis=update_hypothesis(hypothesis,data,num_of_cat,opt1, c, g) 

[m n]=size(data); 

%  label_tabel=(hypothesis'*[data; ones(1,n)])>0; 

%  new_hypothesis=train_hypothesis(data,label_tabel); 

  

 

 

num_examples_per_cat=n/num_of_cat; 

 label_tabel=(hypothesis'*[data; ones(1,n)])>0; 

 for i=1:num_of_cat 

     L(:,i)=mean(label_tabel(:,(i-
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1)*num_examples_per_cat+1:i*num_examples_per_cat),2)>0.5; 

     label_tabel(:,(i-

1)*num_examples_per_cat+1:i*num_examples_per_cat)=repmat(L(:,i),1,num_examples_per_cat); 

 end 

 new_hypothesis=train_hypothesis(data,label_tabel,opt1, c, g); 

 

 

IV. Update_label_tabel.m 

function 

label_tabel_new=update_label_tabel(label_tabel,num_exampels_per_cat,num_examples_in_cat) 

num_of_cat=length(num_examples_in_cat); 

[m n]=size(label_tabel); 

 

lambda=(num_exampels_per_cat/n); 

 

label_tabel_new=zeros(size(label_tabel)); 

 

for i=1:num_of_cat 

    offset=sum(num_examples_in_cat(1:i-1))+1; 

    S0=sum((label_tabel(:,offset:offset+num_examples_in_cat(i)-1)==0),2); 

    S1=sum((label_tabel(:,offset:offset+num_examples_in_cat(i)-1)==1),2);   

    sum_0_cat(:,offset:offset+num_examples_in_cat(i)-

1)=repmat(S0,[1,num_examples_in_cat(i)]); 

    sum_1_cat(:,offset:offset+num_examples_in_cat(i)-

1)=repmat(S1,[1,num_examples_in_cat(i)]);  

end 

 

sum_0_all=repmat(sum((label_tabel==0),2),[1,n]); 

sum_1_all=repmat(sum((label_tabel==1),2),[1,n]); 

gradian_0=(1-label_tabel).*(sum_1_cat-lambda*(sum_1_all-sum_1_cat)); 

gradian_1=(label_tabel).*(sum_0_cat-lambda*(sum_0_all-sum_0_cat)); 

flip_mask=(gradian_0+gradian_1)>0; 

label_tabel_new=xor(flip_mask,label_tabel); 

 

 

V. DBC_train.m 

function model = DBC_train(train_data,train_label,nbits, opt1, c, g) 

% Learning DBC Hyperplanes 

% 

% Publication: 

% Attribute Discovery via Predictable Discriminative Binary Codes.  

%    By M. Rastegari, A. Farhadi, D. A. Forsyth. 

%    In Proceeding of ECCV'2012 

%  

% Code is writen by Mohammad Rastegari. Report any bugs to mrastega@cs.umd.edu 

% This code was modified by Michele Ricciardi as part of the MSc project 

% 

% Usage Syntax: 
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%  

%  model = DBC_train(train_data, train_label, nbits, opt) 

% Input:  

%  train_data: MxN real value matrix : (M: number of dimensions, N: number of 

samples) 

%  train_label: 1xN integer value matrix: N: number of samples 

%  nbits: number of DBC hyperplanes 

%  opt: SVM options (default: '-B 1 -c 1 -s 1') 

% 

% Output: 

%  model: An structure with two fields "hypothesis" and "nbits" 

% 

% Thanks to Jonghyun Choi for cleaning the code.   

 

if ~exist( 'opt1' ), opt1 = []; end 

number_of_hypothesis=nbits; 

 

uni_labels=unique(train_label); 

num_of_cat=length(uni_labels); 

 

num_exampels_per_cat=sum(train_label==1); 

for i=1:num_of_cat 

    num_examples_in_cat(i)=length(find(uni_labels(i)==train_label)); 

end 

 

[m n]=size(train_data); 

 

label_tabel=creating_label_tabel(train_data,train_label,number_of_hypothesis); 

 

for i=1:2 

    %% Learning hypothesis(splits) 

    hypothesis=train_hypothesis(train_data,label_tabel, opt1, c, g); 

    if i>1 

        for j=1, hypothesis=update_hypothesis(hypothesis,train_data,num_of_cat, opt1, 

c, g); end 

    end 

 

    %% Producing binary features 

    [m n]=size(train_data); 

 

    binary_features_train = (hypothesis'*[train_data; ones(1,n)])>0; 

 

    % update binary labels 

    label_tabel=binary_features_train; 

    for j=1:10 

        

label_tabel=update_label_tabel(label_tabel,num_exampels_per_cat,num_examples_in_cat);  

    end 

 

end 

 

model.hypothesis=hypothesis; 
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model.nbits=nbits; 

 

 

VI. DBC_apply.m 

function [H, H2]=DBC_apply(data,model) 

% Testing DBC Hyperplanes 

% 

% Original Code is writen by Mohammad Rastegari. Report any bugs to 

mrastega@cs.umd.edu 

% This code was modified by Michele Ricciardi as part of the MSc project 

 

[m n]=size(data); 

H2= (model.hypothesis'*[data; ones(1,n)]); 

H=H2>0; 

 

VII. getBinaryFeatures.m 

function map = getBinaryFeatures 

    experimentIndex = '17'; 

    addpath('/home/michele/Downloads/liblinear-1.94/matlab'); 

    addpath('./InfoTheory'); 

    addpath('./L-BFGS-B-C-master/Matlab'); 

    disp('Reading CSV file'); 

    m = csvread('./data/500PA_decaf_100pca.csv'); 

    class = m(:, size(m,2)); 

    m = m(:, 1:(size(m,2)-1)); 

    number_of_clusters = size(unique(class),1); 

 

    g = 1; 

    values =[-3:1:3]; 

    k = 3; 

    z = 1; 

    map = [2 4 8 16 24 32]; 

    map = [map; zeros(size(map,2)); zeros(size(map,2)); zeros(size(map,2))]; 

    for mapcount=1:size(map,2) 

         

        nbit = map(1,mapcount); 

        c_matrix = [values; zeros(size(values)); zeros(size(values)); 

zeros(size(values))]; 

        for i=1:size(c_matrix,2) 

         

            disp('Now training...'); 

            cval = 10^c_matrix(1,i);         

            tmp = strcat('-B 1 -c ',{' '},num2str(cval,'%.6f'),' -s 3'); 

 

            %k-fold cross validation  

            CVO = cvpartition(size(m,1)/number_of_clusters,'Kfold', k); 

            err = zeros(CVO.NumTestSets,3); 

            for j=1:CVO.NumTestSets 
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                trainingIdx = CVO.training(j); 

                testingIdx = CVO.test(j); 

                for z=2:number_of_clusters 

                    trainingIdx = [trainingIdx; CVO.training(j)]; 

                    testingIdx = [testingIdx; CVO.test(j)]; 

                end 

                trainingset = m(trainingIdx,:); 

                trainingclasses = class(trainingIdx,:); 

                testingset = m(testingIdx, :); 

                testingclasses = class(testingIdx,:); 

                %train 

                model=DBC_train(trainingset', trainingclasses', nbit, tmp{1}, 

cval, g); 

 

                %test 

                [H,H2]=DBC_apply(testingset',model); 

                [err(j,1) err(j,2) err(j,3)]=evaluatingFeatures(H', 

testingclasses, number_of_clusters); 

            end; 

            disp('Average ARI, Average NMI, Average MI'); 

            c_matrix(2,i) = mean(err(:,1)); 

            c_matrix(3,i) = mean(err(:,2)); 

            c_matrix(4,i)   = mean(err(:,3)); 

            disp(c_matrix(2:4, i)); 

        end; 

        disp(nbit); 

        disp(c_matrix); 

        map(2,mapcount) = max(c_matrix(2,:)); 

        map(3,mapcount) = max(c_matrix(3,:)); 

        map(4,mapcount) = max(c_matrix(4,:)); 

    end; 

    disp(map); 

     

    %now get binary features for best ARI, NMI and MI 

%     [ bestARIvalue bestARIidx ]=max(c_matrix(2,:)); 

%     getFeaturesInFiles(c_matrix(1,bestARIidx), m, class, experimentIndex); 

%      

%     [ bestNMIvalue bestNMIidx ]=max(c_matrix(3,:)); 

%     if(bestNMIidx ~= bestARIidx) 

%         getFeaturesInFiles(c_matrix(1,bestNMIvalue), m, class, 

experimentIndex); 

%     end; 

%     [ bestMIvalue bestMIidx ]=max(c_matrix(4,:)); 

%     if((bestMIidx ~= bestARIidx) && (bestMiidx ~= bestNMIidx)) 

%         getFeaturesInFiles(c_matrix(1,bestMIidx), m, class, 

experimentIndex); 

%     end; 

 

end 
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VIII. getFeaturesInFiles.m 

function getFeaturesInFiles(cvalpower, m, class, nbits, experimentIndex,g) 

    cval = 10^cvalpower; 

    tmp = strcat('-B 1 -c ',{' '},num2str(cval,'%.6f'),' -s 3'); 

    %train 

    model=DBC_train(m', class', nbits, tmp{1},cval,g); 

 

    %test 

    [H,H2]=DBC_apply(m',model); 

    disp(strcat('Saving to CSV file ../results/',experimentIndex,'_',date,'-

learnedLabels_cp',num2str(cvalpower),'.csv')); 

    binary_filename = strcat('../results/',experimentIndex,'_',date,'-

learnedLabels_binary_cp',num2str(cvalpower),'.csv'); 

    csvwrite(binary_filename, H'); 

    

csvwrite(strcat('/home/michele/Uni_Masters/project/results/',experimentIndex,'_',date,'-

learnedLabels_cp',num2str(cvalpower),'.csv'), H2'); 

    %TODO- write to mongodb 

end 

 

 

IX. evaluatingFeatures.m 

function [ARI NMI MI] = evaluatingFeatures(results, true_labels, 

number_of_clusters) 

    %results = csvread(filename); 

    %true_labels = csvread('../results/truelabels.csv'); 

    [idx, c] = kmeans(results, 

number_of_clusters,'dist','Hamming','start','sample', 

'emptyaction','singleton'); 

    disp(min(idx)); 

    disp(max(idx)); 

    ARI = RandIndex(true_labels,idx); 

    NMI = nmi(true_labels, idx); 

    MI = mutualInformation(true_labels, idx); 

    disp(ARI); 

    disp(NMI); 

    disp(MI); 

end 

 

 

X. copytodb.sh 

#! /bin/bash 

 

csvtool paste 500PA_mappingfile_all.csv $1 >temp.csv 

mongoimport -d $2 -c animals --type csv --file temp.csv --fieldFile $3 

 

XI. customSVMTrain2.m 

function [ finalW ] = customSVMtrain2(x, trueY, c, g) 
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    % x is a 3 dimensional array where the last dimension indicates which 

    % of the set is being targeted 

     

    % y is 2 dimension, each row at index N is an array of labels 

    % associated with the respective x matrix whose 3rd dimension is N 

    if(~exist('g')) 

        g=1; 

    end; 

 

    [N M D] = size(x); % M= numb of features, N=numb of datapoints, D=numb of 

dimensions 

    temp = zeros(N, M+1, D);     

    % Add bias 

    for d=1:D 

        temp(:,:,d)= [x(:,:,d) ones(N,1)]; 

    end 

    clearvars x; 

    x = temp; 

    clearvars temp; 

    M = M+1; 

    l = -inf(M*D,1); 

    u = inf(M*D,1); 

    I = eye(D,D); 

    wcwc = zeros(D, D); 

    f = @error; %returns error 

    grad = @gradient; %returns gradient of error 

     

    margin = 1; 

    tic(); 

    %opts = struct('factr', 1e12); 

    [finalW,finalF,info] = lbfgsb( {f,grad} , l, u); %Perform minimization 

    toc(); 

    finalW = vec2mat(finalW,D); 

     

    %loss function = sum(sum(max(0, margin-y<w,x>))+c*wTw)+ ||WcTWc-I||Fro^2 

    function value = error(wc) 

        value = 0; 

        w = vec2mat(wc,M)'; 

        for i=1:D 

            dotproduct = x(:,:,i)*w(:,i); 

            misclas = trueY(:,i).*dotproduct; 

            tmp = sum(max(0, margin-misclas))+c*w(:,i)'*w(:,i); 

            value = value + tmp; 

        end 

        wcwc = w'*w-I; 

        value = value +g*((norm(wcwc,'fro'))^2); %add Identity matrix and 

extra parameter for regularization 

    end 

 

    %gradient of loss = sum(sum( (1-y<w,x>)>0 (-y*x):0)+2*c*w)+4*(WcTWc-I)*Wc 

    function dobj = gradient(wc) 

        dHinge = []; 
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        w = vec2mat(wc,M)'; 

        for i=1:D 

            tmp=0; 

            for j=1:N 

                dotproduct = x(j,:,i)*w(:,i); 

                if(margin-(trueY(j,i)*dotproduct) >0) 

                    tmp= tmp+(-trueY(j,i)*x(j,:,i)); 

                end 

            end 

            dHinge = [dHinge; (tmp' + 2*c*w(:,i))]; 

        end 

        wcwc = w'*w - I; 

        dobj = dHinge +reshape((g*4*w*wcwc),1,[])'; 

    end 

end 

 

 

B. Visualisation application 

I. server.js (backend) 

// 

// # SimpleServer 

// 

// 

var http = require('http'); 

var path = require('path'); 

 

var express = require('express'); 

// Retrieve 

var Db = require('mongodb').Db, 

MongoClient = require('mongodb').MongoClient, 

Server = require('mongodb').Server, 

ReplSetServers = require('mongodb').ReplSetServers, 

ObjectID = require('mongodb').ObjectID, 

Binary = require('mongodb').Binary, 

GridStore = require('mongodb').GridStore, 

Grid = require('mongodb').Grid, 

Code = require('mongodb').Code, 

BSON = require('mongodb').pure().BSON, 

assert = require('assert'); 

var actualDb = null; 

var dbname = '17_withoutorth'; 

 

// Connect to the db 

var connectToDb = function(){ 

  MongoClient.connect("mongodb://localhost:27017/"+dbname, function(err, db) 

{ 

    if(!err){ 

      console.log("connected!"); 

      actualDb = db; 
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    }else console.log(err); 

  }); 

}; 

 

connectToDb(); 

var app = express(); 

var server = http.createServer(app); 

 

app.get('/data/:id/:numPic/:desc', function(req, res) { 

 //Get stuff 

 console.log('ID: %d\nValues: %d\nDesc: 

%d',req.param('id'),req.param('numPic'),req.param('desc')); 

  var options = {}; 

  options.limit = req.param('numPic'); 

  var desc = req.param('desc'); 

  var actualField = 'field'+req.param('id'); 

  if(desc == 0){ 

    options.sort = [[actualField,'asc']]; 

  }else{ 

    options.sort = [[actualField,'desc']]; 

  } 

  actualDb.collection('animals').find({}, options).toArray(function(err, 

obj){ 

    res.send(200, {'data': obj, 'index': req.param('id')});   

  }); 

}); 

 

app.get('/changedb/:dbname', function(req,res){ 

  console.log('Changing to DB: ', req.param('dbname')); 

  dbname = req.param('dbname'); 

  connectToDb(); 

  res.send(200); 

}) 

 

app.use(express.static(path.resolve(__dirname, 'app'))); 

server.listen(3000, "127.0.0.1", function(){ 

  console.log('Listening on port %d', server.address().port); 

}); 

 

 

II. controllers.js (front-end) 

'use strict'; 

 

/* Controllers */ 

 

var datavisapp = angular.module('dataVizApp', []); 

 

datavisapp.controller('AwAFeaturesCtrl', function($scope, $http) { 

  $scope.binaryFeatures = 32; 

  $scope.picPerFeature = 20; 
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  $scope.features = []; 

  $scope.addToZeros = function(data, index){ 

    for(var i in data){ 

      $scope.features[index-1].zero.push(data[i]); 

    } 

  }; 

  $scope.addToOnes = function(data, index){ 

    for(var i in data){ 

      $scope.features[index-1].one.push(data[i]); 

    } 

  }; 

 

  $scope.getAllTheData = function(){ 

    $scope.features = []; 

    //For each feature 

    for(var index=1; index<=$scope.binaryFeatures; index++){ 

 

      var finalObjectForFeature = {id: index, zero: [], one: []}; 

      $scope.features.push(finalObjectForFeature); 

 

      //grab the 0s 

      console.log('data/'+index+'/'+$scope.picPerFeature+'/0'); 

      

$http.get('data/'+index+'/'+$scope.picPerFeature+'/0').success(function(data) 

{ 

        $scope.addToZeros(data.data, data.index); 

      }); 

       

      //grab the 1s 

      

$http.get('data/'+index+'/'+$scope.picPerFeature+'/1').success(function(data) 

{ 

        $scope.addToOnes(data.data, data.index); 

      }); 

      //compile them together 

      console.log("some Data: "+index); 

    } 

  }; 

  $scope.getAllTheData(); 

}); 

 

 

III. index.html (front-end) 

<!doctype html> 

<html lang="en" ng-app="dataVizApp"> 

<head> 

  <meta charset="utf-8"> 

  <title>Visualising binary features</title> 

  <link rel="stylesheet" href="components/bootstrap/dist/css/bootstrap.css"> 

  <link rel="stylesheet" href="css/app.css"> 
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  <script src="components/angular/angular.js"></script> 

  <script src="js/controllers.js"></script> 

</head> 

<body ng-controller="AwAFeaturesCtrl"> 

  <div class="container"> 

    <h1>Visualising binary features</h1> 

    <br> 

    <h2>Select the number of pictures per binary feature 

      <select ng-model="picPerFeature" ng-change="getAllTheData()"> 

        <option default>5</option> 

        <option>10</option> 

        <option>20</option> 

        <option>30</option> 

        <option>40</option> 

        <option>50</option> 

        <option>75</option> 

        <option>100</option> 

        <option>150</option> 

      </select> 

      <input type="checkbox" ng-model="showfeaturesNo" value="true"> 

      <div ng-show="showfeaturesNo"> 

        Change number of features showing: 

        <select ng-model="binaryFeatures" ng-change="getAllTheData()"> 

          <option>2</option> 

          <option>4</option> 

          <option default>8</option> 

          <option>16</option> 

          <option>24</option> 

          <option>32</option> 

        </select> 

      </div> 

      <!-- for each feature --> 

      <div class="row"> 

        <div class="col-md-6"> 

          <h3>Zero</h3></div> 

          <div class="col-md-6"> 

            <h3>One</h3></div> 

          </div> 

            <div class="row" ng-repeat="feature in features"> 

              <div class="row" ng-if="showfeaturesNo"> 

                <h2>Bit number: {{feature.id}}</h2> 

              </div> 

              <!-- show the 0s --> 

              <div class="col-md-6"> 

                <div ng-repeat="image in feature.zero" ng-

style="{'background-image': 'url(img/' + image.pictureTag + '.jpg)'}"  

class="img-rounded"> 

                </div> 

              </div> 

 

              <!-- show the 1s --> 

              <div class="col-md-6"> 
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                <div ng-repeat="image in feature.one" ng-style="{'background-

image': 'url(img/' + image.pictureTag + '.jpg)'}"  class="img-rounded"> 

                </div> 

              </div> 

 

            </div>   

 

        </div> 

      </div> 

    </body> 

    </html> 

 

 

IV. app.css 

/* app css stylesheet */ 

 

body { 

  padding-top: 20px; 

} 

 

.container{ 

 width: 100%; 

  

} 

 

.img-rounded{ 

 max-height: 140px; 

 height: 140px; 

 width: 140px; 

 display: inline-block; 

 background-size: cover; 

    background-repeat: no-repeat; 

} 

 

.row{ 

 margin: 20px; 

} 

 

.col-md-6{ 

 background: #ddd; 

} 

 

 


